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Abstract

A rigorous theoretical analysis is used to show that for both Newtonian and non-Newtonian power law fluids agitated in stirred vessels, the
average shear rate y in the fluid is a function of the rotational speed N of the impeller, as follows:

y = constant - N (laminar flow)

y = constant - N*/? (turbulent flow).

Only in turbulent flow, the proportionality constant in the above equation depends on the flow index and the consistency index of the power law
fluid. The above equations derived by theoretical reasoning are in excellent agreement with the long established empirical art.
In bubble columns, the average shear rate depends on the superficial gas velocity U,, as follows:

_ 7))
y = constant - U,

where n is the flow index of the power law fluid. The proportionality constant in the above equation for bubble columns is a function of the flow

index, consistency index and the density of the liquid.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Stirred tanks and bubble columns are widely used as mixing
vessels and bioreactors. Average spatial fluid velocity gradients
at the level of the eddies or the prevailing shear rate, is an impor-
tant variable in bioreactors but is not easy to characterize. A
knowledge of shear rate is essential for at least two main reasons:
(1) shear rate influences the average apparent viscosity of non-
Newtonian fluids and hence affects power absorption, mixing
characteristics and mass transfer phenomena [1]; (2) microor-
ganisms, bioflocs and other suspended solids are susceptible to
damage that is dependent on the prevailing shear rate and asso-
ciated shear stress [2,3].

The main equations for estimating average shear rate y and
the maximum shear rate yn,x in the impeller zone of stirred tanks
are summarized in Table 1 [2,3]. Most authors have correlated
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shear rate with the rotational speed of the impeller [4-7], or with
power input that depends on impeller speed [8,9]. The equations
in Table 1 were all obtained empirically. Here we show by purely
theoretical reasoning that the average shear rate in Newtonian
and non-Newtonian media in a stirred vessel is a function of
only the rotational speed N (laminar flow), or N*? (turbulent
flow). As demonstrated further, these theoretical outcomes are
in excellent agreement with the well-established prior art.

In bubble columns, the sole source of agitation is the pneu-
matic power input provided by isothermal expansion of the
sparged gas. For such cases, the average shear rate is shown
to exclusively depend on the superficial gas velocity and the
rheological properties of the fluid in ways that are consistent
with other independent theoretical analyses [10,11].

2. Theory

The specific energy dissipation rate in a stirred tank is well
known to depend on the shear rate y and the shear stress t [12],


mailto:jlcasas@ual.es
dx.doi.org/10.1016/j.cej.2006.07.002

2 J.A. Sdanchez Pérez et al. / Chemical Engineering Journal 124 (2006) 1-5

Nomenclature

Q

gas—liquid interfacial area per unit volume of lig-
uid in bubble column (m~!)
constant in Eq. (9)

diameter of the impeller (m)
diameter of tank (m)

height of fluid in tank (m)

impeller constant

consistency index (Pas")

constant in Eq. (24)

torque (N'm)

flow index

agitation speed s~h

Power number

power input (W)

constant in Eq. (20)

impeller Reynolds number

volume of fluid (m?)

volume swept by the impeller (m?)
constant in Eq. (23)

width of impeller blade (m)

SE NP VEEZIZIATITSAAQ

Greek symbols
e energy input per unit mass (W kg™!)
y average shear rate (s’l)

Ymax maximum shear rate (s~!)

nw viscosity (Pas)
Ua apparent viscosity (Pas)
b4 the number pi
P density of fluid (kgm™3)
T shear stress (Pa)
v constant in Eq. (29)
Table 1
Correlations for shear rate in stirred tanks
Equation Reference
y =kiN Metzner and Otto [4]

03 g
y = 4‘2N(%) % Bowen [6]
4n n/(n—1)
Y=k (m) N Calderbank and Moo-Young
[5]

Hoffmann et al. [8]

Henzler and Kauling [10]
cited by Candia and Deckwer
[9]

Bowen [6]

Robertson and Ulbrecht [7]

Ymax = 3.3N1.5di(ﬁ)0.5

_ 1n szndizp 1/(1+n) ) ) )
Ymax = N(1 +5.3n) —x Wichterle et al. cited in

Robertson and Ulbrecht [7]

as follows:

P (1)
ull—

% 14

where P is the power input and V is the volume of the fluid in
the tank. Furthermore, for Newtonian fluids, the viscosity u is
the ratio of shear stress and shear rate, i.e.

T

== 2)
14
therefore, Eq. (1) can be written as follows:
p Y
S=w=ws =, 3
14 14
or
1 P\'/? @)
r=\uv)

Eq. (4) applies to laminar, turbulent and transitional flows.
For non-Newtonian fluids obeying the power law [1], we
have:

T=Ky" &)

where K is the consistency index and n is the flow behavior
index of the fluid. Because the apparent viscosity u, is given as
follows [4]:

T _

pa=—=Ky" !, ©6)
14

for non-Newtonian media the equation corresponding to Eq. (3)

becomes the following:

P P
v = MY @)
and, therefore,
1 p\ VotD
y = (K V) . ()

Eq. (8) applies to both laminar and turbulent flow regimes.

For agitation under laminar flow (Re < 10), the Power number
(Np) and the agitator Reynolds number (Re) are related [13,14]
as follows:
_ C
" Re
where the constant C depends on the geometry of the tank and
the impeller [13,14]. Substituting the following definitions [1]
of the Power number and Reynolds number,

N, ©)

__r (10)
P pN3d?
Nd?
Re = P4 (11)
"

in Eq. (9), we obtain the following equation:

P (12)
pN3&>  ~ \ pNd? |
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In Egs. (10)—(12), p is the density of the fluid, N the rotational
speed of the agitator and d; is the diameter of the impeller.

The power input of course depends on the torque M on the
impeller, as follows:

P = 27MN. (13)

For Newtonian fluids, the substitution of Eq. (13) in Eq. (12)
leads to the following equation:

C ,u,di3
2

Eq. (14) applies to laminar flow.
In turbulent flow, the Power number is constant [ 13,14], there-
fore, from Egs. (10) and (13) we have the following:

M =

N. (14)

P 2nNM
== — (15)
pN>d?  pN-d;
or
N.d>
M= ode (16)
21

From Eq. (13) for a stirred tank of standard geometry [1],
i.e. H=dr =3 d;, the specific power input can be expressed as
follows:

P 2nNM 8

— = 3= S NM. 17)
V. nw/4 Bdy) 33d;

Substitution of Eq. (14) in Eq. (17) gives the equation:

P 8 cd? 4uC

R B Vo U VP Loy Vi (18)
Vo 3 2w n33

Hence, in laminar flow, the specific power input is a function of
N?.Eqs. (3) and (18) imply that

P 5 4uC 5
— = = —=N 19
v =Y Y (19)
or
4c\ 2
y=\-x53 N =gN (20)
3

where ¢ is a constant. Eq. (20) is valid for both Newtonian and
non-Newtonian fluids.

For turbulent flow (Re > 10%) in standard stirred tanks, Eqgs.
(16) and (17) lead to the following equation:

P 8

P Np;odi5 N2 = 4Np/od-2
Vo 333 2 33
1

L N3, Q1

Thus, in turbulent flow, the specific power input is a function
of N3. Furthermore, from Egs. (3) and (21), we can deduce the
following:

P ,  4Nppd?
— = —L2 LN, 22
A 3 (22)
or
12

4N, pd?
y=< # > N32 = wN3/2 (23)

7371

where w is a constant for a Newtonian fluid because the Power
number and viscosity are constants.

For turbulent flow in non-Newtonian fluids, replacing the vis-
cosity term in Eq. (23) by Eq. (5) and further rearrangement can
be used to obtain the following equation for average shear rate:

1/(14n)
2
_ <4Nppdi ) N3/ o 3/ (24)

where m is a constant. Eq. (24) is quite general and applies also
to Newtonian media (n=1, K= ).

2.1.1. Extension to bubble columns

In bubble columns, the power input per unit volume of liquid
is related with the superficial gas velocity Ug, as follows:

P U, (25)
Vo 8pUg

Substitution of the above in Eq. (8) leads to the following expres-
sion:

1 1/(n+1)
Y= (Kngg) : (26)

Eq. (26) is identical to the equation that was obtained for bub-
ble columns by Henzler and Kauling [10] through dimensional
analysis. Henzler and Kauling [ 10] related the average shear rate
in bubble columns to the energy input per unit mass (i.e. €), as
follows:

pe \ 1/(n+1)
y=(%) 27)
where
&= gUs,. (28)

An equation similar to Eq. (26) was derived theoretically by
Kawase and Kumagai [11]. This equation included a proportion-
ality constant ¥ as follows:

—1/(n+1)
y — (1/2/1181/(1’!"1‘1) (K> i (29)
0

If in Eq. (29) the value of ¥ is estimated as proposed by Kawase
and Moo-Young [15] and Eq. (28) is substituted for the specific
energy input, the following equation is obtained:

K —1/(n+1)
y = (10.3”_0'63)1/(n+1)(Ugg)l/(n+l) (p) . (30)

Except for the multiplier (10.37—963)"/"*V Eq. (30) is identi-
cal to Egs. (26) and (27).

3. Discussion

The theoretically derived Eqs. (20) and (23) suggest that
in Newtonian media, the average shear rate depends on N
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and N*? in laminar (Re<10) and turbulent (Re>10%) flows,
respectively. This theoretically derived dependence is of course
in complete agreement with the well-established empirical
equation of Metzner and Otto [4] (Table 1), thus revealing a
previously unknown theoretical foundation for that equation.
Other empirical correlations that suggest a direct dependence
between shear rate and N are those due to Bowen [6] and
Calderbank and Moo-Young [5], as shown in Table 1. Clearly,
the empirical evidence is overwhelmingly consistent with the
theory.

In turbulent flow, the empirical evidence shows that the shear
rate depends on N L5 (Table 1; [7]) and this is consistent with the
theoretically derived Eq. (23). As a further empirical evidence
for Eq. (23), Kelly and Gigas [17] correlated values of the aver-
age impeller shear rate obtained through computational fluid
dynamic modelling, with the rotational speed of the impeller, as
follows:

y = 64.3N. 31)

The regression coefficient for the above equation was 0.96 [17];
however, for the same data (Fig. 10a of reference [17]), we
obtained the following correlation:

y =33.IN"4. (32)

Eq. (32) correlated the data with a regression coefficient of
0.999, or substantially better than Eq. (31) proposed by Kelly
and Gigas [17]. The exponent on N-term in Eq. (32) is quite
close to the theoretically derived value of 1.5. Egs. (31) and
(32) are for an A315 axial flow hydrofoil impeller (LIGHTNIN
Mixers, Rochester, NY, USA) operated in the transitional flow
regime.

As further evidence in support of the analysis presented here,
for non-Newtonian power law fluids, the empirical equation
cited by Robertson and Ulbrecht [7] (Table 1) reveals that the
shear rate is proportional to N¥!*" or in exact agreement with
the theoretical Eq. (24). In non-Newtonian media, as expected
[7,16], the shear rate depends on the rheological properties of the
fluid in addition to depending on the rotational speed. Clearly,
empirical evidence from three independent sources [7,Wichterle
et al. cited in 7, 17] supports the theoretical Eqgs. (23) and
(24).

In bubble columns, the mechanistically derived Eq. (26)
shows that the average shear rate depends on the superficial
aeration velocity, the rheological properties of the power law
fluid and its density. This mechanistically derived relation-
ship is supported by independent analyses [10,11]. Although
many empirical correlations for shear rate in bubble columns
have disregarded any relationship between shear rate and prop-
erties of the fluid (i.e. K, n and p) (see Chisti [2] for a
review), this approach has been questioned in the literature
[2,16,18].

In summary, the agreement of the theory discussed here with
several independent empirical observations in different flow
regimes and types of fluids, strongly supports the theoretical
Eqgs. (20), (23), (24) and (26).

4. Conclusions

Theoretical reasoning presented here leads to equations for
correlating the average shear rate in stirred vessels operated with
various types of fluids in laminar and turbulent flow regimes.
The theoretically derived Egs. (20), (23) and (24) are over-
whelmingly consistent with well-known independent empirical
observations, thus lending credence to the theoretical reason-
ing used and rationalizing the prior empirical observations. In
both Newtonian and power law fluids, the average shear rate in
laminar flow is confirmed to depend on the impeller rotational
speed N. In turbulent flow in both Newtonian and non-Newtonian
media, the average shear rate is shown to depend on N¥/1*" In
bubble columns, the average shear rate is related with the superfi-
cial aeration velocity and the rheological properties of the fluid in
accordance with Eq. (26). This mechanistic relationship agrees
with other independent observations.
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